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1 Research Project

The present research project studied thre-(diinelesional flow arounld

aircraft configurations. The project has developed an algorithm that

adapts the grid, the flow equations, and the numerical scheme to tile

evolving flow field. A general code (CODE3D) has been completed.

CODE3D applies the turbulent Navier-Stokes equations within the vis-

cous regions, while the simpler Euler equations are employed over the

inviscid areas of the domain. The code generates grids with two dif-

ferent topologies. The viscous region is covered with prismatic cells,

while the inviscid part is covered with tetrahedra. The method attains

increased local grid resolution by subdividing cells and/or by redistribut-

ing nodes. The algorithm focuses on the complicated physics of aircraft

flows. The emphasis is on local flow features, which include shear layers,

shock waves, and vortices. The main applications were an F 1f-type air-

craft configuration, as well as a transport aircraft for which experimental

data were available.

1.1 Tasks

The project was broken into eight tasks, which were pursued. Those

tasks were as follows:

1. Development and validlation of an Euler solver with tetrahedra

grids.

2. Development and validation of a Navier-Stokes solver with pris-

matic grids.



3. Development of a method for adaptive grid refinement/coarsening

of tetrahedra.

4. Development of a method for adaptive redistribution of semi-unstructured

prismatic grids.

5. Development of grid generator for aircraft geometries.

6. Development of a flow visualization package with 3-D, unstructured

grids.

7. Development of general interface between any type of aircraft ge-

ometry and the solver.

8. Aircraft flow simulations.



2 Results

The tool for the aircraft flow simulations has beenit a unified code

that was developed as part of the project. The code. consists of a hybrid

solver (Navier-Stokes / Euler), generatingi a hybrid grid (Prisms / Tetra-

hedra), using two types of grid adaptation (Redistribution / Embedding).

Specifically, the results of the project were:

1. Euler code with tetrahedra grids

An Euler, Finite-Volume code (EU3D) for unstructured tetrahe-

dral grids was developed. Accuracy, computing time, and storage

requirement were evaluated via test cases, which included wing,

and aircraft flows. Storage requirements were kept to a minimum.

2. Navier-Stokes code with prismatic grids

A full Navier-Stokes, Finite-Volume code (NS3D) was developed for

the semi-unstructured, prismatic grids that are employed to cover

the regions close to the aircraft. The structure of the grid in one

of the directions allowed drastic reduction in memory required by

the code.

3. Adaptive grid refinement/coarsening code for tetrahedra grids

A code (ADAP3D) for adaptive refinement / coarsening of tetra-

hedra grids was developed and evaluated. Anisot ropic (directional)

division of the cells allowed significant reduction in required num-

ber of cells. Applications of the method included adaptat ion of

the tetralhedral initial grid around the low wing transport (LXVT)

aircraft provided by NASA.

3



4. Adaptive redistribution of sem i-unstructu red prismatic grid

Redistribution of the nodes of the viscous regions prismatic grid

was employed for better resolution of the viscous stresses. This

was achieved by moving the nodes along the normal-to-surface di-

rection.

5. Prismatic grid generator around F-16-type of aircraft

An algebraic generator of prisms around aircraft configurations was

developed. The computing time was one or two orders of magnitude

lower than existing aircraft grid generators. A type of an F-16

aircraft was the main application.

6. Tetrahedral grid generator around F-16-type of aircraft

An octree-type generator of tetrahedra around aircraft configura-

tions was developed. The computing time was one or two orders of

magnitude lower than existing tetrahedral grid generators. A type

of an F-1G aircraft was the main application.

7. Pre-processor

The codle PR.E3D was developed, which interfaces any aircraft ge-

ometry with the solver, and adaptive algorithm. It was designed

to handle different grid topologies, such as prisms, and tetrahedra.

The geometries for which it was applied included a version of the

F-16 aircraft, and a low wing transport plane.

8. Flow visualization with ,-D, uust'ructured grid graphics

A general package (PLOT3D) was developed for graphical repre-

sentation of three-dimensional geometries, mnstructur(d grids, as

4



well as of flow fields using Sun and IBM workstations, Among

the features of the graphics code are cuts (planar and non-planar)

through the grid and flow field, as well as contour plots oni sclected

boundary and interior surfaces. Evolution of tUnsteady flow fields.

as well as of the adaptive grid can also be visualized.

9. Aircraft simulations.

Flow around two types of aircraft configurations was simulated.

The first was an F-16 type, while the second was a low wing trans-

port configuration. Experimental data from NASA was used in the

latter case for code validation.

Impact of Research on CFD

The research of the project ted to the following tiove, contributions

to CFD:

1. Generation and use of prismatic grids ýor viscous flow siniulations.

2. Generation of grid around aircraft that takes computing time of

the order of a few minutes using a workstation.

3. One of the first adaptive grid simulation of viscous flow around

aircraft.
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4 Technical Description of Accomplishments

Details on the algorithins developed, as well as oil the si Iiiii lilt lolls

carried out are given in the following sections.



Hybrid Grid for the F-16 Aircraft



GENERATION OF PRISMATIC GRID

An unstructured triangular grid is employed as the starting surface

to generate a prismatic grid. This grid, covering the body surface, is

marched away from the body in distinct steps, resulting in the generation

of structured prismatic layers in the marching direction . The

process can be visualized as a gradual inflation of the body's volume.

There are two main stages in the algebraic grid generation process. In

the first, the destination of the marching surface is determined; in the

second, the nodes are positioned on that surface. The marching surface

is determined by employing a new technique based on voxels . The

nodes are positioned by determining the marching vectors corresponding

to the nodes of the previous surface.

Direct control of grid orthogonality ý_d spacing is a main advantage

of the algebraic method since the accuracy of Navier-Stokes solvers is crit-

ically dependent on these properties . Algebraic grid generators may

yield a grid that is non-smooth and that may overlap. A grid generator

must produce a grid with no overlapping faces, which may occur espe-

cially in concave regions. In both stages of the present algebraic method

elliptic-type steps are employed in the form of Laplacian smoothing.

The goal of the marching scheme is to reduce the curvature of the pre-

vious marching surface at each step while ensuring smooth grid spacing



to avoid surface overlap. The developed method reduces surface curva-

ture by marching the nodes to a known, smooth surface which encloses

the current marching surface. The marching surface is modeled by its

voxel representation, which is then smoothed.

2.1 Smooth Voxel Generation

A voxel is a three-dimensional element used to approximate a point in

space. It may have any shape which will entirely fill a domain when voxels

are placed adjacent to each other, thus conserving the volume. In the

present work, parallelepiped voxels are used. The voxel representation

of an object comprises all voxels partially occupying any part of the

object. Figure 2 shows the voxel representation of the surface of an

F-16A aircraft.

Figure 2: Voxel Representation of F-16A

In general, the voxel representation is externally bounded by quadri-



lateral faces which do not intersect the object. It is this aspect of voxel

representations which allows them to be used to generate a conformal

surface. Figure 3 shows the corresponding smoothed voxel representa-

tion of the same aircraft surface as in Fig. 2.

...., ...• ....... • ~ '! ' •

Figure 3: Smoothed Voxel Representation of F-16A

Three important facets of this method shou.d be mentioned:

The smoothing of the voxel face structure must be done in a man-

ner which prevents voxel nodes from moving toward the marching

surface. A voxel node is allowed to move only if its new position

is visible from the neighboring faces. Laplacian-type of smooth-

ing is applied a number of times (typically 10-20). The resulting

smooth surface will be termed the target surface. Nodes forming

the triangular faces of the prismatic grid need to be placed on this

surface.



"* The dimensions of the voxel should be such that surface details are

captured. Excessively large voxels will "ignore" small scale surface

features.

"* If a large number of smoothing operations is performed, the voxel

nodes move far from their original positions. This has the same

effect as choosing a voxel dimension too large to capture surface

detail.

It should be emphasized that the resulting target surface has reduced

surface curvature compared to the marching surface. Concave regions

are "filled-in", while convex areas are smoother.

2.2 Node Normals and Marching Vectors

One main issue of the present method is determination of the vectors

along which each node of the triangular surface of the previous layer of

prisms will march (marching vectors). The initital step is calculation of

the vectors that are normal to the surface. For a continuous analytic

surface, the calculation of the surface normals is trivial. However, the

grid marching surface comprises discrete faces of discontinuous slope.

Furthermore, nodes that lie on concave surfaces must march away from

the concavity. Also, as the node marches, it must not intersect the current

marching surface prior to intersecting the target surface.

This situation is avoided by enforcing a visibility condition which

constrains the marching vectors such that the new node position is visible

from all faces of the manifold. This region is the visibility regiorn. It has

the shape of a polyhedral cone extending outward from the node as shown

in (Figure 4).



i k

Manifol4

Figure 4: Visibility region

To simplify the constraints, a visibility cone with a circular cross-
section and half-cone angle/3 centered on the normal vector is constructed

at the node. This cone lies completely within the visibility region (see

Figure 4).

The initial marching vectors hizj are the normal vectors NA. However,
this may not provide a valid grid since overlapping may occur-especially

in regions of the grid with c.,sely spaced nodes. To prevent overlapping,

the marching vectors must be altered to increase the divergence of all rhk
on each manifold i. Therefore, a number of smoothing passes (typically

5) are performed over all the nodes on the marching surface:

7:^n = E~k thk
K

After each step, a check is performed to determine if rhi lies outside the



visibility cone. The following equation is used:

(h,. N,) < cos(f,). (2)

If r7h does lie outside the visibility cone, then it is projected onto the

cone and held fixed for subsequent operations.

2.3 Advancement and Smoothing of Marching Surface

The nodes on the previous surface are connected to the points of

intersection of the target surface and the marching vectors ihi. A special

situation arises if a valid intersection cannot be found. The marching

vector is then allowed to deviate within the visibility cone until a valid

intersection with the target surface is found. If this fails, the degree of

orthogonality constraint is successively relaxed and a search is made over

the target faces to find the closest point to node i, while maintaining the

visibility condition. If a valid intersection point still cannot be found,

the target surface is not sufficiently conformal and the voxel dimension

is reduced.

Marching to a point on the target surface may result in a reduction

in face area caused by "convergence" of the marching grid lines. This

will yield a non-uniform mesh; eventually, overlapping may occur. This

situation may arise during growth of concave regions due to decrease in

the surface area available for node placement. The nodes on the target

surface are redistributed by applying a Laplacian-type operator so that

the surface elements change their areas and curvature smoothly.



2.4 Distribution along the Marching Lines

Flexibility in specifying grid-spacing along the marching lines is cru-

cial for accuracy of Navier-Stokes computations. The marching process

generates a relatively small number of prisms occupying a relatively large

volume and is therefore an undesirable grid for Navier-Stokes computa-

tions. This is remedied by generating new prisms with user-specified

dimensions within the original prisms.

The prisms generated by marching the surface form a skeleton mesh

of valid prisms within which any number of new cells may be gener-

ated. A scheme is employed which distributes new nodes along each one

of the marching lines emanating from points on the body surface. In

other words, the marching directions are maintained, but the marching

distances (An) are modified. This is accomplished by performing a cubic-

spline fit to each of the marching lines using the prism node locations for

the spline knots. New nodes are then distributed along the splined lines.

The distribution is such that the new node positions satisfy certain grid

spacing requirements. In the present work, the spacing of the first point

off the body surface is specified along with a constant stretching factor

w. Then, the n-positions of the points are given by the formula:

ni+l = nj + w(nj -- nj-i ). (3)

A typical value of w is 1.1.

3 Generation of Tetrahedral Grid

The tetrahedral grid forming the outer region of the computational

domain is created through successive octree refinement. In this process,



an initial hexahedron is subdivided into eight smaller hexahedra called

octants. Any octant which contains a portion of the octree seed is a bound-

ary octant and is subdivided further (inward refinement). The resulting

structure provides an efficient search path for the determination of new

boundary octants. The hexahedral grid is further refined in a balanc-

ing process to prevent neighboring octants whose depth differs by more

than one (outward refinement). The boundary octants are then altered

to provide a smooth transition across the junction. Finally, all hexahe-

dra are divided into tetrahedra to produce the outer grid. The resulting

tetrahedral grid varies smoothly from the outermost prismatic layer to

the domain outer boundary. Simplicity, grid quality, and the ability to

match a pre-specified surface triangulation are the main advantages of

the tetrahedral grid generation method presented here.

3.1 Octree Refinement and Data Structure

Efficiency of octree refinement relies heavily on the data structure

defining the octree. For this reason, both global and local pointer struc-

tures were developed (see Figs 5 and 6). Each global octant comprises

node, face and edge components.

Figure 5: Global Octant Structure

The global pointer system used requires 26 words per octant, 5 words

per face, and 3 words per edge. The local octant comprises sub-octant,



node, sub-face, and sub-edge componei ts.

8 sub-Octants1

b6 sub-faces; - 66 ub-Edgesj""",IlI 27 Noe

Figure 6: Local Octant Structure

The local octant structure requires a total of 129 words and provides

the template for octant refinement. The same local octant is used for

all global octant refinement. If an octant is to be subdivided, all ex-

ternal subcomponents of the local structure must first be defined. Any

components of the global octant which have yet to be refined are subdi-

vided. Then the values of the local subcomponents are obtained directly

from the global pointers. This direct referencing completely avoids global

searches for required data. After completion of the local structure, the

sub-octants are constructed.

3.2 Inward Refinement

The criterion for octant subdivision is based on octant dimension

and boundary containment. The refinement process is terminated once a

characteristic dimension of the boundary octants has reached a specified

threshold value. In general, this value should be such that a boundary

octant will not contain whole triangular faces at the junction. Typically,

this value is half the average prismatic grid edge length. The second

part of the refinement criterion is boundary containment. Only bound-

ary octants are subject to inward subdivision. Since a typical junction

may comprise several thousand triangular faces, checking each octant for



boundary containment may be computationally expensive. However, a

simple and efficient method to check for boundary containment has been

developed.

The identification of boundary octants is reduced from a problem

of multiple real-number calculations to determine octant containment of

triangles in 3-D space at each refinement step to one of simple integer

comparisons. This is accomplished by using the voxel representation of

the junction layer. The voxel representation may be stored in terms of

integer triplets defining the location of each voxel. Since this voxel is in-

variant throughout the generation process it needs to be constructed only

once. Each octant is assigned an integer triplet domain (the equivalent

integer range required to fill the octant with voxels) based on the oc-

tant dimension. If any voxel triplet is contained within the octant triplet

domain, the octant is a boundary octant. Additionally, the structure of

the octree allows associations between voxels and octants which limit the

extent of the searches performed. This is a crucial factor for an efficient

method.

3.3 Outward Refinement

It is desireable to have smoothly varying cells within the grid domain.

Outward refinement is performed for two reasons: 1) to ensure that the

resulting grid varies smoothly from the body surface to the outer domain

boundary and 2) to ease the division of interface octants into tetrahedra.

Figures 7 and 8 illustrate the effect of outward refinement. In Figure 7,

the hexahedra change size rapidly while in Figure 8, the change is much

more gradual.



Figure 7: 3-D Section of domain showing seed surface and hexahedra
without outward refinement



Figure 8: 3-D Section of domain showing seed surface and hexahedra
with outward refinement



Figures 9 and 10 show the configuration of an interface octant before

and after outward refinement, respectively. In Figure 9, one of the oc-

tant faces has been inwardly subdivided several times. It is seen that an

octant may have an arbitrary number of subfaces in an arbitrary config-

uration on a given face after inward refinement. This presents difficulties

in subsequent tetrahedral division as all nodes would have to be trian-

gulated. The resulting tetrahedra would be ill-formed in most cases. In

Figure 10, the original octant has been subjected to outward refinement.

During the process, new octants are generated within interface octants

until less than four subfaces occur on any face of the interface octant.

Figure 9: 2 faces of an interface octant showing face subdivision after
inward refinement

The sole criteria for outward refinement is a difference greater than

one between the depth of any octant component and tht. octant itself.

Outward refinement is done in an iterative manner to allow for any prop-

agation which may occur due to the refinement itself. Sweeps are made

through the domain until no octants meet the refinement criterion. Oc-

tants which have any component at a depth greater than the octant are

termed interface octants. Examples of interface octants are shown in

Figure 11.



Figure 10: Outward refinement has reduced the complexity of hte in-
terface octant by li1,.iting the number of sub-faces on any face of the
interface octant to 4

Figure 11: Face and Edge Depth Differences within an Octant



3.4 Tetrahedral Octant Refinement

Following division of the domain into smoothly varying octants, eacti

octant must be subdivided into tetrahedra. It is possible to divide a

hexahedron into either five or six tetrahedra. Since the tetrahedra must

be consistent across octant faces, six tetrahedra are formed within each

octant. This ensures octant to octant compatibility in the simplest man-

ner because the same template may be used for all octants. (See Figure

12)

Figure 12: Division of hexahedra into tetrahedra. The upper octants
have been divided into 6 tetrahedra and are consistent across the shaded
afce. The lower octants have been divided into 5 tetrahedra and are
inconsistent across the shaded face

Likewise, interface octant subfaces are divided according to a local

template to ensure consistency with tetrahedra formed by non-interface

octants.



Boundary octants are treated in a two-part process to reduce the

complexity of the grid and at the junction. This is done by first moving

boundary octant edges lying close to triangular surface edges to intersect

the nearest triangular edge. Then, boundary octant nodes lying close

to triangular faces are made to lie on the closest triangular face. Next,

the faces of the boundary octant which intersect the junction are clipped

at the intersection to form a boundary polyhedra. This has the effect

of reducing the complexity of the junction and also helps to eliminate

ill-formed cells. Finally, the boundary polyhedra is specially tesselated

with tetrahedra in a way which eliminates the hanging nodes produced

by the intersection. The final tetrahedral grid is shown in Figure 16 and

comprises 168568 tetrahedra and 28302 nodes matching a seed surface of

2408 triangular faces.

4 APPLICATIONS

An F-16A aircraft geometry was chosen as a case for the developed

grid generator, since the complexity and singularities of the surface are

a severe test for the method. The main features of the configuration

are the forebody, canopy, leading-edge strake, wing, shelf regions, and

inlet. The surface triangulation consists of 2408 triangular faces , and

of 1259 points. Generation of a prismatic grid around this geometry is

quite complex, and especially so at the junctions between the different

aircraft components. Two parts of the generated prismatic grid require

examination in terms of quality. The first is the grid formed by the

triangular faces of the prisms (unstructured part), while the second is

the grid formed by the quadrilateral faces (structured part).



Two views of the initial and grown surfaces are shown in Figures 13

and 14. The growth of the grid is illustrated after 15 marching steps.

The effect of the marching process is similar to inflating of the original

body volume. It is observed that the distribution of points on the grown

surface is quite smooth. The highly singular regions at the aircraft nose,

the wing leading and trailing edges, the wing tip, the canopy, as well as

the inlet, have been smoothed-out on the grown surface. Furthermore,

the grid spacing on the grown triangular surface is smoother compared

to the initial triangulated body surface. The singular concave regions

at the junctions between the wing and the fuselage, as well as between

the engine inlet and the body have been "filled-in", and the grid is more

uniform over those regions compared to the initial grid on the body.

A view of the structured part of the prismatic grid is shown in Fig. 15.

It should be noted that the depicted surface is not planar. The grid

spacing on the quadrilateral surface is quite uniform. Furthermore, the

marching lines emanating from the aircraft surface are quite smooth,

including the ones that correspond to singular points. The lines do not

have the "kinks" that appear frequently with algebraic grid generators.

A 3-D view of the outer tetrahedral grid is shown in Figure 16. It is

seen that the tetrahedra vary quite smoothly in size from the outermost

prism layer to the farfield.

The final number of prismatic cells is 96320 and the number of pris-

matic grid nodes is 50360. The final number of tetrahedra is 168568 and

the number of tetrahedral grid nodes is 28302.

The required computing time for the prismatic grid was 1742 seconds

while the time required for the tetrahedral grid was 88 seconds.



Figure 13: Foreview of Initial and Outermost Prism Surface (unstruc-
tured part of prismatic grid)



Figure 14: Aftview of Initial and Outermost Prism Surface (unstructured
part of prismatic grid)



Figure 15: Structured part of the mesh at the junction between body
and strake



Figure 16: 3-D Section of domain showing seed surface and final tetra-
hedral grid



Navier-Stokes Method



2 NUMERICAL SCHEME

The Navier-Stokes equations of viscous flow are given in integral form

for a bounded domain V as follows:

d~ f UdV+f/ a(Fi - Fv) + (G - Gv) +9(H, - HO dV = ),
Tt IR U V+J ( a(Fx + y Oz d 0(1)

where

P Pu Pv Pw

Pu pu 2 + P pvu pwu

U PV Fj , Gt= pv 2 + p H = PWV

Pw Puw pvw Pw2 + P

E (E + p)u (E + p)v (E + p)w

are the state and convective flux vectors in the x, y, and z- directions

respectively.



The viscous flux vectors are

0 0

Fv = xY ,5Gv 7=

U7•Xz + VTX1 + WT., - qX uT= + vrTy + W)Tz - q

(2)

and

0

T'XZ

Hv = Zr

rzZ

wrrZ + vrYZ + WTZZ - 1

where r•, r,, rzz, rxy, i-7, r7y are the viscous stresses. For a perfect gas

the pressure is related to the specific internal energy e by the relation
p = (E - 1) [E - e (U2 + V2 + W2)]

After nondimensionalizing the above equations, the Mach and Reynolds

numbers appear as parameters. Sutherland's law is used for computing

the dynamic viscosity coefficient.

2.1 Finite-Volume Spatial Discretization

The number of nodes in a prismatic mesh is approximately half the

number of cells. As a consequence, a vertex-based scheme appears to



require less storage compared to a cell-centered scheme. Minimization

of storage requirement is one of the main issues in development of the

present scheme, which stores the state-vector values at grid-nodes. Con-

sider the typical grid-cell of Fig. 2, which has two triangular and three

quadrilateral faces, where 2,3, ,k are the unit vectors in the x,y,z-directions,

and h is the unit vector normal to the cell-surface OV. The volume inte-

gral containing the spatial derivatives in equation (1) is equivalent to a

surface integral via the divergence theorem:

(FI- Fv) +o9(G 1 - Gv) + (H1 - Hv)'\dV

f ~ ((F1  Fv)iZ + (GI - Gv)3 + (HI - Hv)k)hMS (3)

The above surface integral is discretized as:
5

E [(Fj - Fv)S. + (GI - Gv)Sy + (H, - Hv)S.]f (4)
=1=

where the summation is over the five faces of the prism and Si, Sy, Sz

are the face-areas projected on the yz, xz , and xy-planes, respectively.

The flux vectors are considered at the face-centers (f), and their values

are obtained by averaging the values at the face-nodes (n). For each one

of the two triangular faces, it is

1 n=3
(FP - Fv)f = E(FI - Fv)., (5)3n=l

while for each one of the quadrilateral faces the averaging is

1 n=4

(Fr - Fv)f = - Fv)., (6)

where the summation is over the three nodes (n) of the face (f). Similar

expressions are used for the G, H terms.



2.2 Viscous Terms Evaluation Using Dual Cells

The viscous terms Fv, Gv, Hv consist of first order derivatives of the

state-variables, which need be evaluated at the nodes. In the present

work, evaluation of the viscous terms employs special cells that surround

each node. Those cells will be referred to as dual cells The basic

requirements on the dual mesh are.

1. each dual cell corresponds to only one grid-node.

2. each dual face is associated with one grid-face.

3. one only dual vertex lies within each grid-cell.

In order to construct the dual mesh each grid-cell is divided into six

subcells of equal volume. Each triangular face of the prism is divided into

three areas Node A at the center of the triangular face is connected

with the middle of the edges dividing the face into three quadrilateral

areas (Fig. 3). Also, each quadrilateral face of the prism is divided into

two equal areas by connecting the middle of the edges that do not belong

to the triangular faces (Fig. 3). Node C is the common node of all six

subcells, which are hexahedra of equal volume. Each one of the six

subcells constitutes a part of the dual cell that surrounds a particular

node. For example, the hexahedron cell to which nodes 1 and C belong

(Fig. 3) is a part of the dual cell that surrounds node 1. Each dual face

shares exactly two neighboring cells. Figure 4 gives an example of a pair

of a grid face with the corresponding dual face. The face is formed from

nodes 1,3,4, while the dual face is formed by the center nodes C and C'

of the two prisms that share face 1,3,4.



The viscous terms Fv, Gv, Hv consist of first order derivatives of flow

variables, which are evaluated at the grid nodes. A typical derivative a,

at node i is evaluated by considering a volume integral that is equi"alent

to a surface integral via the divergence theorem:

au 1f au(•~ dV = [ u u(I. i) dS, (7)
Tx =Vi JJ jiv (IX -9 14. fa i z~

with Vi being the volume of the dual cell correspond;ing to node i. The

above surface integral is discretized as:

Z (U S--)' (8)

where the summation is over the faces of the dual cell which surrounds

node i, and S. is the face-area projected on the yz-plane. Figure 5

illustrates the two of the cells that are employed in order to update

solution at node i, as well as the triangular faces of all prisms surrounding

node i.

odd-even solution modes suppression

Odd-even modes frequently appear in numerical solutions due to non-

linearities and/or shock-waves. Such solution modes are frequently trans-

parent to the discrete equations, and they are acceptable steady state

solutions. There are two different types of oscillatory modes that may

be observed in solutions with prismatic elements. The first type are the

modes on the unstructured (triangular) faces of the prisms, white the

second type are the modes on the structured (quadrilateral) faces. Fig-

ure 6 shows the two possible oscillatory modes on triangular faces of thc

prismatic elements, where + and - indicate deviations from a mean. Sirm-



ilarly, Fig. 7 illustrates the one possible such mode on the quadrilateral

faces of the prisms.

The present choice of dual cells for evaluation of the viscous terms

has the effect of suppressing the above odd-even modes. The value of the

viscous terms contribution at node 0 of Figures (6), (7) will be negative,

and it acts to cancel the positive odd-even mode value at that node.

2.3 Lax-Wendroff-Type Time Marching

The change in time of the state vector U at node i is evaluated through

the following second order series expansion in integral form:

f f• 6Ud - f ff (U+' - U-)dV

I Atik OU)ndV + (Ati*)2 0 2U)
liv' + j ii-),d2 4(0

which leads to the following equation:

,= 6t ij]] OU -)dV + Ik iAti (10)
V f a.49t ffv.2 tjVU2

The expansion is considered to be at the nodes and Vi d&!notes the dual

cell volume that surrounds node i, while zti is the corresponding time-

step.

The time derivatives in equation 10 will be replaced by spatial deriva-

tives according to the Lax-Wendroff approach:

OU _Oa(F 1 -FV) + _O(G_-_GO + Hv))--Tf = OX a- y + 49Z(l

and

a2u C9 (r(Fi - Fv) 0(G, - Gv) 0(11 H,)-t--- = t Cr\ -• + .a+



(Oa(Fi- Fv)OU\ _ ((GI -Gv)WU) a f8(H,- Hv)DU
TaX Ou aT - 0 -j T -au - "

(12)
Evaluation of the viscous terms Jacobians OF, aG_ , and - , is

quite expensive and complicated, especially when the extra terms due to

a turbulence model are included . As a consequence, the viscous

part of the second order in time term of eq. 9 is dropped, which results in

a discretization that is first order accurate in time for the viscous terms,

while second order temporal accuracy is kept for the inviscid terms. This

results in a compact scheme, which has the same numerical molecule for

both the inviscid, and the viscous terms. Moreover, all scheme operations

are restricted to within each grid cell, which is crucial in cases in which

adaptive grid refinement/coarsening is employed.

distributions to nodes with cell-based operations

It is important to arrange the scheme operations in such a way so that

no information is required from outside of each cell. For this purpose,

the numerical operations that are related to the dual mesh are split into

cell-based operations.

The first order change-in-time of the state-vector at the cell-center

AU is defined as At(--by)', and it is distributed to the six corners of the

cells using equations 10, 11:

I At V A ..
6u, = 8( ) ,A )U , i = 1, ... ,6. (13)

It is observed that the distributions are weighted by the factor(-)i(- )I. i

This term is close to one for uniform hexahedra grids. However, in the



case of unstructured grids the above term may differ significantly from

unity, and it should be included in order to have a stable scheme.

The second order term of the Taylor series expansion 10 ran be ex-

pressed using eqn 12, as follows:

S(At, OF IO U . dS

'N 2 OU it

( iOut-) jihdS - Aj .AL) WihdS (14)

where Vi is the volume of the dual cell surrounding node i. Defining

OF1  0G1  Ou H1
AF=-- AU, AG = -AU , AH =-a AU.au ou -9U

As stated, the viscous terms Jacobians have been omitted in the above

expression for the second order in time term. Substituting into (14) it

follows:

- JLf AF(Z'!i)dS - ff AG(.'ii)dS - ff AH(kh)dS. (15)

AU is evaluated at the center of the grid-cell, while AF, AG, AH are

evaluated at the grid-nodes. A correction term that accounts for the

difference in time-step of the grid-cell (Ate) and of the dual cell (At i )

is employed in order to evaluate AF, AG, AH from AU. Specifically,
_V whl8F 8 U

AU = -!U-At, while AF = VJ- 8Ati. Therefore,

AF = (ýt,) OF-A1  . (16)

The same correction term is employed in a similar way for AG, AH. The



total distribution to node i then follows from equations (13),(15),(16)

I At V 1 At 3
u = (.- , I (AFS + AGS + HSz)fqJ

If¢=1 ,fq•'

(17)

6 (-V•)i E (AFSZ + AGSv + AHS,)f •
Ift=l,f tii

In the above expression the first summation is over the quadrilateral

faces (fq) of the prism, while the second summation corresponds to the

triangular faces (ft) of the prism. Inclusion of the correction term is

necessary for the stability of the scheme. Without it the scheme fails to

converge.



The case considers supersonic flow of Maca number equal to

1.4, and of Reynolds number equal to 103 around a spherical body of

maximum thickness equal to the radious. A prismatic mesh was gener-

ated from a hexahedra spherical mesh consisting of 20 nodes along the

peripheral direction, 80 nodes in the azimuthal direction, and 30 nodes in

the radial direction. The same boundary conditions were applied as in the

previous case. Views of the mesh employed are illustrated in Figure 13.

The symmetry plane (XY-plane), as well as the equatorial (XZ-plane) are

shown. In addition Fig. 17 depicts a top view of the farfield boundary,

which shows the unstructured part of the prismatic grid. Figure IS shows

the obtained solution in terms of Mach number contours. In this case,

a spherical bow shock is observed upstream of the body.



Finally, figures 19 and 20 illustrate flow around an F-16 type of con-

figuration. The Reynolds number is 10', the Mach number is 0.6, and

the angle of attack is 0 degrees. A coarse grid consisting of 48K points

was employed for the simulation. Figure 19 shows pressure contours on

the upper surface, while Fig. 20 shows the paths of particles that were

released at the nose region of the aircraft.



Figure 1: Semi-unstructured, prismatic grid
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Figure 2: Prismatic grid cell notation
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Figure 4: Pair of triangular face and corresponding dual face
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Figure 5: Control volumes corresponding to node i
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Figurc 6: Possible odd-even modes on triangti!ar races of p�isrns
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Figure 7: Possible odd-even modes on quadrilateral faces of prisms
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Figure 16: Two views of the spherical prismatic grid around large body
created from a 80 x 20 x 30 original hexahedra grid - Symmetry (XX')
and equatorial (XZ) planes



Figure 17: Top view of the farfield boundary showing the unstructured
part of the prismatic grid



Contour Plot of Mach no. for Plane 0.00, 0.00, 1.00, 0.00
Min Level =0,000 Max level =1.900 Interval 0. 100

X axis

Figure IS: 3-D supersonic boundary layer and spherical bow shock
around largc body (Re 10' 1O3 lc, = 1 .4) - Syminctry (XX') and equa-
torial (XZ) planes



Boundary Contour Plot of P Coeff

FIG jc.
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Figure Paths Of particles
released at the nose region
of the F16-type configuration
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2 Governing Equations

The governing equations to be solved is the system of time-dependent

Euler equations for a perfect gas which combines the equations of mass,

momentum and energy.

WU aF aG OH
at + a + -b7y + -ý-z 0 (1)

The state vector U and the flux vectors F,G,H are expressed in terms

of the conservation variables, namely, density p, xy,z- momentum and

energy as follows:

= p pu pv pw E (2)

pu2 + p pvu pwu

F PUV G= PV2 + p H 1=V (3)

Puw pvw pw 2 + p

Eu + pu Ev + pv Ew + pw



where E is the total energy, related to the other variables by an equation

of state which, for a perfect gas, is

E = P+ 1p(u 2 + V2 + W2)

3 Temporal discretization

The solution at any particular node, say 0, at time level n+1 can be

expressed in terms of the solution at time level n using a Taylor series

expansion.

Un+1 = un + 6un

/0 \at 0  2at 0 t + &2 a/0 -2- (4)

The temporal derivatives in the above expression are evaluated in

terms of the spatial derivatives using the governing equations according

to the Lax-Wendroff approach. The finite-volume method integrates the

Euler equation (1) on the control volume Qo enclosing a particular iiode,

say 0, which is enveloped by the boundary a0o.

I -a- + + aG + a) dQ=O (5)

which is rewritten using the divergence theorem as follows:

/ au) d= n.( (Fn.,+Gn1 +,Hn,)dS (6)

U)f/0=- (Fn_+Gn 1 +Hn,)dS (7)

-o0 (Fn, + Gny + Hn) dS(



where n=, n., n, are the components of the unit vector normal to the area

element dS of the boundary surface af0.

The second order temporal derivative at the node 0 is evaluated as:

r0 2 U d! 0 (OF +OG +OH\

which, after changing the order of differentiation, is recast using the

divergence theorem as follows:

~ 0 2 U\ f= (8F W) ( U) n,+(OHOU W) dS
Ot ( u ouý u 5

(10)

- = - (Xn.. + f3n, + 4ýn,) OU dS (

where

(- OF) 0G I(H). (12)

are the Jacobian matrices.

4 Spatial discretization

The surface integrals that appear in equations (8) and (11) are to be

evaluated on the boundary of the control volume of each node in the grid.

There are different approaches in defining the control volumes around the

nodes.

4.1 Dual mesh

The spatial terms that appear in equations (8) and (11) are evalu-

ated by employing special volumes that form the dual mesh. The dual



mesh is formed by constructing non-overlapping volumes, referred to as

dual cells, around each node. The dual cells represent the control volume

associated with the respective node. The dual mesh, for a two dimen-

sional unstructured grid, is shown with dashed lines in Figure 1. The

mesh is constructed by connecting the mid-points of the edges and the

centroids of the triangular elements that constitute the grid and hence-

forth dividing each triangle into three quadrilaterals of equal areas. The

finite-volume around any node, say 0, is constituted by the union of all

the quadrilaterals which share that node.

Analogously, the dual mesh for a tetrahedral grid is constructed by

dividing each tetrahedron into four hexahedra of equal volumes, by con-

necting the mid-edge points, face-centroids and the centroid of the tetra-

hedron. Figure 2 shows a tetrahedron 0-1-2-3 with the two hexahedral

cells O-E1-F2-C-F3-E4-F1-E5 and 3-E2-F2-C-F4-E6-F1-E5 that consti-

tute a portion of the dual cells around the nodes 0 and 3 respectively.

The control volume around a node 0 is thus constituted by a polyhedral

hull which is the union of all the hexahedra that share that node. The

quadrilateral faces that constitute the dual mesh may not all be planar.

4.2 Flux evaluation using edge based operations

The surface integral term in Equation (8) represents the mass, mo-

mentum and energy flux across the faces of the control volume around

the node 0. The equation is written in the discrete form as follows:

1 0 (Fn, + Gn + Hn,)dS = E (FS.+GSy+HSz)k
(13)



where the summation is over all the dual mesh faces that constitute the

boundary of the control volume around the node 0. The areas S,, Ss,, S,

are projections of the dual face.

The flux evaluation can be cast into edge-based operations. Consider

an edge i, constituted by the nodes, 0, N (i). The quadrilateral faces

of the dual mesh that are connected to the edge at its mid-point P are

shown in Figure 3. The number of such quadrilateral faces connected

to an edge depends on the number of cell neighbors for that edge. As an

illustrative ca.e, the edge in Figure 3 is shown to have four quadrilateral

faces. The projections of the area Ai associated with the edge i are

evaluated in terms of those of the quadriiateral face areas, al, 52, a3 ,

44, as

4 4 4

(A = . (ai),, (A,)u = E (aj)y , (A,) = • (14)
j=. j=1 j=1

The projections are computed such that the area vector always points

outward from the control volume surface associated with any node. The

boundary of the control-volume around the node 0 is constituted by the

union of such areas Xi associated with each edge i that share the node

0. Thus, the summation over the dual mesh faces in equation (13) is

equivalent to a summation over the edges of the grid and the fluxes

are evaluated on the dual mesh faces associated with each edge. This

eliminates a significant amount of computational work as the number of

edges is much less than the number of faces in an unstructured grid.

In order to evaluate the contribution of each edge to the flux across

the control-volume faces of a node 0, the flux vectors F,G,H on the

mid-point P of each edge i are obtained by taking the average of the



flux vectors evaluated at the nodes 0, N (i) on either ends of the edge

using the known state variables at these nodes. This strategy has been

shown to be equivalent to a finite-element Galerkin approximation which

is second-order accurate in space Thus, the contribution of the edge

i to the fluxes across the faces of the control volume surrounding the

node 0 is given by:

Fp (A,). + Gp (A,), + Hp (A,). (15)

The fluxes are thus evaluated on an edge-wise basis and conservation is

enforced by producing a positive flux contribution to one node and an

equally opposite contribution to the other node that constitutes the edge.

Similarly, the surface integral in equation (11), which is used to evalu-

ate the second-order temporal derivative by the Lax-Wendroff approach,

can be expressed in the discrete form as:

f +n 1, + N) UdS =

1: (AS. + 3S, + k -- (16)
00 k=1 k a

where the summation is over all dual mesh faces that constitute the

boundary of the control volume around the node 0. Similar to the evalu-

ation of the first order temporal derivative, the above operations can be

cast a summation over the edges.

The first order temporal derivatives evaluated at the nodes 0, N (i)

are averaged to get the value of (-) at the mid-edge point P. The statc

vectors known at the nodes are averaged to get the state vector Up at the



mid-edge point P with which the Jacobians Ai, 13i, Ci, are computed.

A= ((')I, =C
OUM ) P k uUm = v1uP uu

(17)

The contribution of the edge i to the evaluation of the second order

temporal derivative at the node 0 is then given by,

(ik (A),. + Bp (Ai), + ep (A,)_) (-)- (18)

The contribution, (WU")c, of the convective flux terms to the total

change 6U. at node 0 is obtained by substituting equations (15) and

(18) into the equation (4):

(6Un)

- At (Fp (A,). + Gp (Ai)y + Hp (A,)j) +
•'0 =1

_ 1 nPxjtz

4.3 Data structure

The number of nodes in a typical tetrahedral mesh is approximately 5

to 6 times smaller than the number of cells. As a consequence, a vertex-

based scheme appears to require less storage compared to a cell-centered

scheme. Minimization of storage requirement is one of the main issues in

development of the present scheme, which stores the state-vector values

at grid-nodes. From Equation (19) it can be seen that all the operations

pertaining to the evaluation of the fluxes and the dissipation terms (as

will be seen in the next section) can be performed in a single loop through

the edges. Hence, an edge based data structure is a natural choice for the



solver. The data structure is constituted by pointers that give the area

projections associated with every edge as well as the nodes associated

with the edge. As the solver is node-centered, the state vectors are stored

at the nodes. These pointers provide all the information that is needed

to evaluate the expressions in the relevant equations.

5 Upwind-like Artificial Dissipation

Upwind schemes for solving the hyperbolic equations in the conserva-

tion form rely on the theory of characteristics and account for the proper

wave propagation directions while differencing the spatial derivatives.

These schemes have shown good capability to capture the shocks with-

out oscillations. The upwind connection to artificial dissipation in central

differencing schemes is brought forth in using a simple one dimen-

sional analogy. Adding second-difference dissipation to a second-order

accurate central differencing scheme is shown to produce a first-order

upwind scheme and adding a fourth-difference dissipation is shown to

produce a second-order accurate upwind scheme. The motivation behind

the dissipation modelling in the present work is to formulate it in such

a manner as to simulate the implicit dissipation terms of the upwinding

schemes, without increasing the computation cost of the algorithm.

Considering the one-dimensional Euler equation,

OU aDU aF
+ --A =o, (20)

given any two states UL, UR, the flux difference can be uniquely ex-

pressed as

FR - FL = Ok~kek (21)
k



where ek are the right eigenvectors of A. The term ak in the summation

represents the strength of each wave and Ak represents the kVh eigenvalue

of A (or the speed corresponding to that wave). Using this expression

and accounting for the sign of the eigenvalues, the flux vector at any

intermediate state I between L and R can be expressed as

F 1j :(FL+FR)-1Eak I Ak Iek (22)
k

which can be recast into the following form
I

F1 = (FL + FR) A- , (UR - UL) (23)

where AX is Roe's matrix

The flux vector at the mid-edge point P was taken as the average

of the flux vectors at the two nodes of the edge. This is equivalent to

evaluating F1 using the first term in equation (23). Hence, the dissipa-

tion terms are modelled so as to be similar to the second term of the

equation as this corresponds to the implicit smoothing term of the up-

winding scheme. A simplified form of (23) is obtained by replaci.A A

with p (A) =1 u I +c, the maximum eigenvalue of Roe's matrix. This

ensures that the dissipation terms do not dwindle down to zero ne:.ý

the stagnation or the sonic points. The contribution, (6UO) 5 2, of shock

smoothing terms to the change 6Un the node 0 is given as follows:

(6UD)2 = F', (pXXrS. + p(Br)S, + P(Cr)S,)i (UN(i) - uO) (24)

where p(Ar),p(Br),p(Cr) are the spectral radii of Roe's matrices cor-

responding to the flux vectors F, G, H evaluated for the edge i. The

eigenvalues are evaluated at the Roe averaged quantities The shock



smoothing term is evaluated similar to the convective fluxes on an edge-

wise basis.

The background smoothing 4'erms are modelled in a similar fashion.

Instead of the first difference of state vectors as used in equation (24),

"a difference of the accumulated first difference over the edges sharing

"a node is taken. This is in concert with the one-dimensional analogy

wherein such a difference :s equivalent to the fourth-difference operator

at the nodes. fhe contribution, (WUo)A 4 , of background smoothing terms

to the change bUn at node 0 is given as follows:

(WUn)..;=--i E (P(.&)S + P(fr)Si,+ P(6r)S.) (6UN,(i) - oU.)
i=1

(25)

where

S= >(TJFk - Uo) (26)
k

is the accumulated first difference over all the edges k sharing the node

0. The background smoothing terms are evaluated on an edge-wise basis

as well.

The total change bU0 at the node 0 is given by:

0Ug = (WUo'), + a2 (APO) (bUo)),2 + r4 (1 - APO) (bUO), (27)

AP is the pressure switch chat is used to turn the shock smoothing

and the background smoothing on at the appropriate regions. For any

node 0, the pressure switch is computed as

(APo)= E'1=1 (PN()- PO) (28)
zF:,' + PO)



the summation is over all the edges that share the node 0. The pressure

switch is normalized by the maximum value over the domain so that

0 < AP < 1. When evaluated as above, AP has a value clise to zero

in the smooth regions of the flow and has a value close to unity near the

regions of flow discontinuities that are characterized by a pressure jump.

The coefficient 0a2 is an empirical parameter that controls the amount of

shock smoothing. The shock smoothing is turned on in the regions of flow

that have a sharp variation in flow parameters such as near the shocks and

is turned off elsewhere. The coefficient 0'4 is an empirical parameter that

controls background smoothing. The background smoothing is turned

on in the smooth regions of the flow and is turned off near the shock

regimes using the pressure switch.

6 Local time stepping

The solution at each node is advanced in time using local time steps.

A CFL stability limitation is applied for the convective terms. The

viscous-like smoothing term can have appreciable magnitude at shock

regions. As a consequence, a stability limitation that combines both the

inviscid, and the diffusion limitations is applied. The time-step restric-

tion for the 1-D wave equation is At _< while the restriction for the

1-D diffusion equation is At < --- where in this case v = 0r2AP. The
-2 1/

formula for the time-step, Ato, for any node 0 then is given by:

v0
V0  , (29)

A, + Ay + A, + D'

where

A, (lo + ao)SO



A= (Jvol + ao)S.0

A (Iw01 + aO)S•0,

and

D = 2a2APo +. (30)S.o + SYo + S"ýo

In the above expression uo, vo, wo are the velocity components at the node

0, ao is the speed of sound, and AP is the pressure switch. The area

terms S=0 , Ss0, S 0 are the projected areas of the dual volume around the

node 0 in the x,y, and z directions, and are given by the formulas:

S0 =- 1 , 1,= S,,O=1(31)

2j=l j=l j=l

where the summation is over all the dual mesh faces that constitute the

boundary of the control volume around the itode 0. A value of the factor

w = 0.5 has been employed.

7 Boundary Conditions

Three types of conditions have been applied for the cases considered

in the present work. Those are (i) flow tangency to wall, (ii) far field,

and (iii) symmetry. The flow tangency condition is imposed by extrapo-

lating the velocity at the center of a boundary cell to the corresponding

boundary face, and then subtracting the component normal to the solid

surface. Density and pressure values are extrapolated from the cell-center

to the boundary face. Characteristic boundary conditions are applied at

the far field boundaries. The characteristic variables that are employed

are the Riemann invariants, the entropy, and the two velocity compo-

nents that are tangent to the boundary. Lastly, the symmetry condition



is applied by simply extrapolating the state-vector from the cell-center

to the corresponding boundary face.

8 Adaptive Grid Refinement

A dynamic grid adaptation algorithm has been previously developed

for 3D unstructured grids. The algorithm is capable of simultaneously

un-refining and refining the appropriate regions of the flow regime, by

detecting the locai flow features. In the case of inviscid flows, the domi-

nant flow features may be shock waves, expansion waves or vortices. The

regions of existence of such features are not known a priori and they

have to be detected. A feature detector senses the flow features that are

present in different regions and guides the adaptive algorithm to embed

these regions if the existing grid spacing in such regions is not sufficient

for resolving the local flow variations. The detector visits the regions

of the grid that were embedded at earlier passes of grid adaptation and

checks if strong flow features are still prevailing in these regions. If the

features have moved away from these regions, as is common in unsteady

flow situations, the detector guides the adaptive algorithm to unrefine

the grid locally in those regions of the grid.

8.1 Feature detection

The feature detector uses velocity differences and velocity gradients

across the edges as the parameters for sensing the flow features. The

threshold values for the parameters are set based on the distribution

of the parameters which is characterized by the average (Sa,,) and the

standard deviation (Sda) of the respective parameters, where S is any



detection parameter In the present work, velocity differences and

velocity gradients are used as the detection parameters. The following

relations are used to set th- threshold parameters for refinement.

S•ef.th = Save + •tSad

The average and the standard deviation are defined as:

5 
--7nedgC S s ,.nedges
nedgeS nedses

The value of the parameter a is chosen empirically, typical value of the

parameter being 0.3. The edges that have a detection parameter value

greater than the threshold value are flagged to be refined. Following the

edge flagging, cells that are having four or more of their edges flagged to

be divided are marked for refinement.

8.2 Cell division strategies

The different strategies usually employed for embedding a tetrahedron

and the methods of cell division employed in the adaptive algorithm used

in the present work are discussed

Octree division

The tetrahedra that are flagged for refinement are embedded by the

octree cell-divizion that divides the parent cell into eight children, as

shown in Figure 4, by inserting mid-edge nodes on the parent cell edges.

The four corner child cells are similar to the parent cell. The four interior

child cells are formed by dividing the interior octahedron, constituted by

the nodes 5-6-7-8-9-10, by the shortest diagonal.



After the octree division of a portion of the grid cells, the resulting

grid contains a number of cells that were initially not flagged for division

but eventually are left with mid-edge nodes on some or all of their six

edges due to refinement in the neighboring cells. These are termed as

the interface cells as they constitute the border between the divided

and the undivided cells and their mid-edge nodes are termed as hanging

nodes. Numerical schemes usually employ normal tetrahedral cells with

four corner nodes and significant changes are necessary in order for the

schemes to be applied to such cells with additional hanging nodes. This

is not desired, as then the adaptive algorithm becomes dependent on the

specific numerical scheme that is employed. Hence, a special method

of cell division has been incorporated in the adaptive algorithm which

eliminates such interface cells. There are different configurations in which

these hanging nodes appear in the interface cells.

Directional division

In the case in which all the hanging nodes are appearing on the edges

of the same face, the interface cell is directionally divided into four chil-

dren as shown in Figure 5. There are four possible cases of such division

depending on which one of the faces the hanging nodes appear. If there is

a hanging node appearing on only one of the six edges, the interface cell

is henceforth divided into two children as shown in Figure 6. Depending

on the edge that has the hanging node, there are six possible cases of

such a division.



Centroidal node division

If the hanging node configuration is any different from the ones dis-

cussed above, the interface cell is treated by introducing a centroidal node

and dividing the cell accordingly, as illustrated in Figure 7. It shows

a case of a cell with two hanging nodes, on edges 1-3 and 2-4. A node

C is introduced at the centroid of the cell and connected to the corner

nodes as well as to the hanging nodes, thus forming tetrahedral child

cells. This approach is general enough to handle the different hanging

node configurations that arise.

9 Numerical Results

Two flow cases are employed in order to provide an assessment of

accuracy, robustess, and computer requirements of the developed Euler

solver on adaptive tetrahedral grids. The first case is transonic inviscid

flow around the ONERA M6 wing. Two different initial grids have been

used to obtain the flow solutions on this configuration. The second case

considers the Low-Wing Transport (LWT) aircraft. The initial grids used

for all the computations have been generated by an advancing front grid

generation method

All the computations were performed on a CRAY Y-MP. The code

was vectorized to run at a speed of about 100 Mflops. The memory

required for the solver was 30 words/node. It should be noted that this

memory requirement is quite small for an unstructured grid Euler solver.

The values of the smoothing coefficients have been a2 = 10-2 for shock-

capturing, and a 4 = 10' for background smoothing.



9.1 ONERA M6 Wing

The ONERA M6 Wing is considered for evaluating accuracy of adap-

tive flow solutions. This configuration has been used as a benchmark

case for evaluating the accuracy of several Euler methods. The wing

has a leading edge sweep of 30 degrees, an aspect ratio of 3.8, a ta-

per ratio of 0.56 and symmetrical airfoil sections. The wing has a root

chord of 0.67 and a semi span of 1.0 with a rounded tip. The com-

putational domain is bounded by a rectangular box with boundaries at

-6.5 < x < 11.0,0.0 < y < 2.5 and -6.5 < z < 6.5. Inviscid, tran-

sonic flow solutions were computed at Mo, = 0.84, and angle of attack

a = 3.060.

Adaptive solution with an initial fine grid

The initial mesh employed comprises of 231507 cells and 42410 nodes.

The triangulation on the wing surface is shown in Figure 8. The solutions

are started from the freestream conditions being specified everywhere.

Figure 9 shows the flow solution after 4600 iterations on the initial grid.

Mach number contour lines on the upper surface of the wing are shown,

plotted using an increment of AM = 0.02. The solution clearly featurcs a

A shock that is formed by the two in-board shocks which merge together

to form a single strong shock in the tip region of the wing. The fore

shock is captured reasonably well whereas the aft shock appears to be

more diffused. This is due to resolution being less in that region of the

grid. The convergence history for the solution obtained on the initial

grid is shown in Figure 10.

The pressure coefficients on the surface of the wing are compared



with the experimental results at three different spanwise locations along

the wing, namely, ir = 0.44,7t = 0.65,t- = 0.90. (Figures 11 to 13). The

Euler result obtained on the initial grid is shown with a dashed line.

Experimental data for the pressure coefficients on the upper surface are

represented by the filled circles, while the data for the lower surface are

represented by the unfilled circles. At station 77 = 0.44, there are two

shocks observed along he chord. It is observed that the pressure jumps

of both the fore and the aft shocks are falling short of the experimental

observaticns. At station 77 = 0.65, it is seen that the two shocks are

closer to each other. The computed pressure jump across the fore shock

is smaller than the experimental values and the aft shock is quite smeared.

At station r7 = 0.90 the two shocks have merged together to form a single

strong shock. From the figure, it is seen that the scheme captures the

shock fairly well at this location. However, the leading edge suction peak

is under-predicted.

The initial grid is now adapt*. '. embedded in the regions of the

local flow features. Figures 14 and 15 show the triangulation on the

wing surface and the symmetry planes with the embedded regions of the

grid being denoted with the darker shades. Velocity differences and the

velocity gradients were used as the detection parameters. The adapted

grid has 833613 cells and 144722 nodes. It is seen that grid embedding

is aligned along the A shock. Furthermore, there is more embedding

along the aft shock than along the fore shock as the former is more

smeared in the initial solution. There is also an appreciable amount of

embedding in the leading edge region of the wing as the flow undergoes

rapid acceleration from the stagnation point and reaches th,. peak Mach



number of about 1.50 within 10% chord at all span wise locations. There

is also some embedding on the symmetry plane near the leading edge

region and near 75% chord which shows the presence of the weak aft

shock at the latter location.

. The solution obtained on the initial grid is interpolated to the new

grid points and this is used as the starting solution for the adapted grid.

Figures 16 and 17 show the solution obtained on the adapted grid.

Mach number contour lines on the upper surface of the wing and on the

symmetry plane are shown, plotted using an increment of AM = 0.02.

It is seen from the figures that both the fore and the aft shocks have

sharpened to an appreciable extent compared to the corresponding so-

lution plots on the initial grid (Figure 9). It is also observed that the

aft shock on the symmetry plane is much sharper. The pressure coef-

ficients comparison of the adapted grid solution with the experimental

observations is shown in Figures 11 to 13, at three spanwise locations.

The pressure coefficient distribution corresponding to the adapted grid

solution is shown in solid lines. It is seen that at all the spanwise lo-

cations, the agreement of the computed solution with the experimental

observations has improved considerably from that of the initial grid solu-

tion (dashed lines). The leading edge suction peak is captured well at all

the locations. It is observed that at station q = 0.44, the aft shock loca-

tion in the final solution is downstream of the experimentally measured

location. This discrepancy has been observed in solutions with other Eu-

ler scheiries The pressure coefficient distribution on the lower

surface of the wing is in good agreement with the experimental results.



9.2 Low-Wing Transport Aircraft

Computations were carried out for a low wing transport (LWT) con-

figuration Inviscid, transonic flow of Moý = 0.768 was

considered with an angle of attack a = 1.1160. A semispan computa-

tional grid was generated for the LWT aircraft geometry without the

nacelles. View of the triangulation on the wing upper surface and the

fuselage is shown in Figure 26. The initial grid is comprised of 48828

nodes and 266400 cells. The experimental pressure measurements were

obtained with Reynolds number of 2.5 x 106 based on the mean aerody-

namic chord of the wing

Computed solutions obtained on the initial grid are shown in Figure

27. Mach number contour lines are plotted at intervals of AM = 0.02.

A single shock wave is formed on the upper surface. Comparison of the

pressure coefficients at three spanwise locations, namely q = 0.20, r =

0.40 and q = 0.55, on the wing surface are shown in Figures 28 to 30.

The experimental values corresponding to the upper surface are shown in

filled circles and the values corresponding to the lower surface are shown

in unfilled circles. Comparing the C'p values obtained on the initial grid,

shown in dashed lines in Figures 28 to 30, with the experimental data

shows that the results agree quite well in the fore regions of the wing, but

agreement is somewhat poor in the aft regions. This has been observed by

other inviscid flow computations as well . The viscous effects change

the flow pattern to a considerable extent in this case. Viscous effects have

been observed to be very significant in the aft portion of the wing due to

flow separation. The grid was embedded using the velocity gradients and



velocity differences as the parameters. The embedded grid, on the aircraft

surface as well as on the symmetry plane, is shown in Figures 31 and 32.

The adapted grid has 185230 nodes. The Mach number contour lines are

shown in Figure 33, plotted at intervals of AM = 0.02. The plot shows

that there is a considerable improvement in the solution as compared to

the one obtained on the initial grid. The shock appears distinctly sharper

on the adapted grid solution. Comparison of the pressure coefficients,

obtained using the adapted grid solution, on the wing surface with the

experimental values is shown in solid lines in Figures 28 to 30. The

figures show that the solution on the adapted grid captures the suction

peak in the fore region of the wing better than the initial grid solution.



Figure 1: Dual Mesh, shown in dashed lines, for a Triangular Grid

Figure 2: Dual Mesh , shown in dashed lines, for a Tetrahedral Grid

Figure 3: Dual Mesh faces attached to an edge

Figure 4: Octree division of a tetrahedron

Figure 5: Directional cell division into four children when all three hang-
ing nodes are on the same face

Figure 6: Directional cell division into two children when there is only
one hanging node

Figure 7: Centroidal Node Division of an Interface Cell



Figure 8: Triangulation of the ONERA wing upper surface (initial fine
grid)

Figure 9: Mach number contour lines on the wing upper surface - Solution
obtained on the initial fine grid after 4600 iterations. (AM = 0.02)

Figure 10: Convergence History for the solution obtained on the initial
fine grid for the ONERA M6 wing

Figure 11: Pressure Coefficients comparison on the wing surface at '7=
0.44 spanwise location. * - Experimental Values (upper surface), o -

Experimental Values (lower surface), - -- Initial grid solution,
One level adapted grid.

Figure 12: Pressure Coefficients comparison on the wing surface at r/=
0.65 spanwise location. * - Experimental Values (upper surface), o -

Experimental Values (lower surface), - - - Initial grid solution,
One level adapted grid.

Figure 13: Pressure Coefficients comparison on the wing surface at 7 =

0.90 spanwise location. e - Experimental Values (upper surface), o -

Experimental Values (lower surface), - - Initial grid solution,
One level adapted grid.

Figure 14: Triangulation on the wing upper surface corresponding to
once adapted grid

Figure 15: Isomvtric view of the triangulation on the wing upper surface
and the symmetry plane corresponding to the once adapted fine grid.

Figure 16: Mach number contour lines on the wing upper surface - Solu-
tion obtained on the once adapted fine grid. (AM = 0.02)

Figure 17: Mach number contour lines on the wing upper surface and
symmetry plane - Solution obtained on the once adapted fine grid.
(AM = 0.02)



Figure 26: Triangulation on the LWT aircraft wing and body surface
corresponding to the initial grid.

Figure 27: Mach number contour lines on the wing upper surface - Solu-
tion obtained on the initial gr;d. (AM = 0.02)

Figure 28: Pressure Coefficients comparison on the wing surface at 77 =

0.20 span-wise location. e - Experimental Values (upper surface), o -

Experimental Values (lower surface), - - - Initial grid solution,
One level adapted grid.

Figure 29: Pressure Coefficients comparison on the wing surface at 77=
0.40 span-wise location. * - Experimental Values (upper surface), o -

Experimental Values (lower surface), - - - Initial grid solution,
One level adapted grid.

Figure 30: Pressure Coefficients comparison on the wing surface at 77=
0.55 span-wise location. * - Experimental Values (upper surface), o -

Experimental Values (lower surface), - - - Initial grid solution,
One level adapted grid.

Figure ll: Triangulation on the wing ;.nd body surface corresponding to
the once adapted grid.

Figure 32: Isometric view of the triangulatio,, on the wing, body and
symmetry plane surfaces corresponding to the once adapted grid.

Figure 33: Mach nu.nber contour lines on the wing upper surface - Solu-
tion obtained on the once adapted grid. (AM - 0.02)
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